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Introduction 

The Cordilleran Ice Sheet, the smaller of two great continen- 
tal ice sheets that covered North America during Quaternary 
glacial periods, extended from the mountains of coastal south 
and southeast Alaska, along the Coast Mountains of British 
Columbia, and into northern Washington and northwestern 
Montana (Fig. 1). To the west its extent would have been 
limited by declining topography and the Pacific Ocean; to the 
east, it likely coalesced at times with the western margin of 
the Laurentide Ice Sheet to form a continuous ice sheet over 
t.000 km wide. Because most of the marginal environments 
of the Cordilleran Ice Sheet were not conducive to preserving 
an extensive depositional record, much of our understanding 
of this ice sheet has come from limited areas where preser- 
vation is good and access unencumbered, notably along its 
lobate southern margin in northern Washington State and 
southern British Columbia. 

Arrival of geologists into Puget Sound late in the 
19th century initiated study of the Cordilleran Ice Sheet. 
The landscape displayed unmistakable evidence of past 
glaciations, but a sporadic sequence of deposits along valley 
walls and coastal bluffs only hinted at a long and intricate 
history of ice-sheet occupations. By the mid-20th century, 
extensive field studies had developed a framework for Pacific 
Northwest Quaternary history. Evidence of four glaciations, 
;utnmarized by Crandell (1965) and detailed by Armstrong 
t p r  al. (1965), Mullineaux et al. (1965), and Crandell(1963). 
tollowed the precedent from the American Midwest: four 
continental-scale glaciations, correlated across broad regions. 
I n  the Pacific Northwest. the youngest ice-sheet glaciation 
(Fraser) was constrained by radiocarbon dates and correlated 
~ t i th  the Wisconsin glaciation of the mid-continent. Earlier 
zlnciations (given the local names Salmon Springs, Stuck, 
<~nd Orting) were identified only in the southeastern Puget 
Idowland. Crandell (1965) suggested that they spanned early 
through late Pleistocene time. 

In the latter part of the 20th century, improved under- 
\tanding of global and regional stratigraphy, and emphasis 
o n  geomorphic processes, have provided a new context for 
.tudies of the Cordilleran Ice Sheet. These advances are the 
topics of this chapter. The record of global warming and 
c,ooling recorded in deep-sea cores shows that there were 
many glaciations during the Quaternary Period, not just 
I'our. Global perspectives on past sea-level variations prove 
critical to understanding tidewater glacier systems like the 
\outhwestern part of the Cordilleran Ice Sheet. New dating 

techniques yield crude but consistent chronologies of local 
and regional sequences of alternating glacial and nonglacial 
deposits. These dates secure correlations of many widely 
scattered exposures of lithologically similar deposits and 
show clear differences among others. 

Besides improvements in geochronology and paleoenvi- 
ronmental reconstruction (i.e. glacial geology), glaciology 
provides quantitative tools for reconstructing and analyzing 
any ice sheet with geologic data to constrain its physical form 
and history. Parts of the Cordilleran Ice Sheet, especially 
its southwestern margin during the last glaciation, are well 
suited to such analyses. The approach allows interpretation of 
deposits and landforms at the now-exposed bed of the former 
ice sheet, and it also suggests likely processes beneath other 
ice sheets where reconstructions are less well-constrained. 

Finally, expressions of the active tectonics of western 
North America are now widely recognized across the 
marginal zone of the Cordilleran Ice Sheet. Such conditions 
were little appreciated at mid-century. Only since the 1980s 
have the extent and potential influence of recent tectonics 
on the landscape of western Washington been appreciated. 
The regional setting for repeated glaciations owes much of 
its form to those tectonic influences; conversely, deformation 
and offset of ice-sheet deposits may be critical in unraveling 
the Quaternary expression of the region's tectonics. 

Perhaps the greatest development in recent study of the 
Cordilleran Ice Sheet, especially its southwestern boundary, 
has been the scientific attention focused on this region - not 
only by geoscientists but also by resource managers, land-use 
planners, and the general public. In the last several decades, 
this glacial landscape has become a region of rapid popu- 
lation growth. In part because of these social pressures, the 
level of scientific study here has rapidly increased, which will 
likely render the story of the Cordilleran Ice Sheet presented 
in this synoptic paper even more quickly outdated than its 
predecessors. 

Chronology and the Stratigraphic Record 

Quaternary Frllinetvork 

More than one hundred years after Bailey Willis published 
"Drift Phenomena of Puget Sound" (1 898), geologists con- 
tinue efforts to identify and correlate the Quaternary strati- 
graphic units across the area episodically covered by the 
southern part of the Cordilleran Ice Sheet (Fig. 1). Nearly 
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Fig. 1. Map of southern extent and lobes of the latest Pleistocene advance of the Cordilleran Ice Sheet in Wasl~ington and British 
Columbia. 

a half century of field investigations in the southern Puget 
Lowland (Armstrong et al., 1965; Crandell et al., 1958; 
Mullineaux et al., 1965; Noble & Wallace, 1966; Waldron 
et al.,  1962) and in the northern Puget Lowland (Clague, 
1981; Easterbrook, 1986, 1994) show that ice sheets have 
advanced south into the lowlands of western Washington at 
least six times. The global climatic template of the marine- 
isotope record illustrates the likely number and frequency 
of glacier advances. It suggests that the current half-dozen 
known glacier advances do not include every advance into 
the region in the last 2.5 million years. The last three ice ad- 
vances correlate with marine oxygen isotope stages (MIS) 2, 
4, and probably 6 (Fig. 2). The most recent advance was the 
Fraser glaciation, discussed later in this chapter. 

Little is known about the climate in the lowlands of 
southern British Columbia and western Washington during 
most of the Pleistocene. Recent research has focused on 
either MIS 2 (Hansen & Easterbrook, 1974; Heusser, 1977; 
Heusser et al.. 1980; Hicock et al.. 1999; Mathewes & 
Heusser, 1981; Whitlock & Grigg, 1999). MIS 2 and 3 
(Barnosky, 198 1. 1985: Grigg et al.. 2001; Troost, 1999), 
or MIS 5 (Heusser & Heusser, 1981; Muhs et al., 1994; 
Whitlock et a/., 2000). From these studies we know climate 
during MIS 3 was cooler than today and sea level was lower. 
The climate of MIS 5 was similar to today's, with marine 
deposits commonly found slightly above and up to 60m 
below modern sea level (Shackelton et al., 1990). 

Recognition of nonglacial environments in the deposi- 
tional record is essential to unraveling the chronology here. 
The present Puget Lowland may be a useful analog for earlier 
nonglacial periods. Areas of nondeposition, soil formation, or 
minor upland erosion dominate most of the lowland (Fig. 3). 
Sediment is only accumulating in widely separated river 
valleys and lake basins, and in Puget Sound. Were the present 
lowland again invaded by glacier ice, it would bury a complex 
and discontinuous nonglacial stratigraphic record. Thick 
sedimentary sequences would pinch out abruptly against 
valley walls. Sediment deposited in valleys could be lOOm 
lower than coeval upland sediment or organic-rich paleosols. 
Thus, the thickness and lateral continuity of nonglacial 
sediment of any one nonglacial interval will be highly 
variable owing to the duration of the interval, subsidence and 
uplift rates, and the altitude and surface topography of fill 
left by the preceding glacier incursion (Troost, 1999). 

West of the Cascade Range, Cordilleran glaciations were 
typified by the damming of a proglacial lake in the Puget 
Sound basin, the spreading of an apron of outwash, deep 
subglacial scouring and deposition of till, formation of 
large recessional outwash channels, formation of ice-contact 
terrain, and deposition of glaciomarine drift in the northern 
lowland. Glacial periods were marked by a change to cold- 
climate vegetation and increased deposition and erosion. 
Thick glaciomarine, glaciolacustrine, and outwash deposits 
accumulated in proglacial and subglacial troughs, capped 
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Fig. 2. Comparison of the marine oxygen-isotope cuwe stages (MIS) using the deep-sea oxygen-isotope datajbr UDP677 from 
.Yhackelton et al. (1990), global magnetic polarit)? cunle (Barendregt, 1995; Cande & Kent, 1995; Mattkinnen & Dalrymple. 
lY79), and ages of climatic intervals in the Puget and Fraser lowlands. Ages for deposits of the Possession glaciation through 
Urting glaciation from Easterbrook et al. (1  981), Easterbrook ( 1  986), Blunt et al. (1 987), atld Easterbrook (1  994). Additional 
trges for deposits of the Puyallup b~terglariatinn from R.J. Stewart (pers. comm., 1999). Ages for the Olympia nonglacial interval 
from Armstrong et al. (1965), Mullineaux et al. (1965), Pessl et al. (19891, and Troost (1999). Ages jor the Coquirlnm srade 
from Hicock & Armstrong (1 985); ages for the Port Moody intersfade from Hicock & Armstrong (1 981). Ages for the Vashon 
smde from Armstrong et al. (1965) and Porter & Swansorl (1998). Ages for the Eversott interstade from Dethier et al. ( 1  995) 
cmd Kollnrten & E[~sterbrook (2001). Ages for the Sumas stade,from Clague et al. (1997). Kovnnen & Easterbrook (20011, and 
Kovanen (2002). 
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Fig. 3. Modern Puger Lowland depositional environments, 
providing one example of the extent of deposition during in- 
terglacial periods. Most of the land area is either erosional 
or non-deposirional (except for minor upland soil formation). 
Modified from Borden & Troost (2001). 

intermittently by subglacial till, predominantly of meltout 
origin. Likewise, subglacial drainage carved deep erosional 
troughs subsequently filled with postglacial volcanic debris 
Aows and alluvium. Thus, there are many unconformities 
and buried topographies in the stratigraphic record. 

Sediment lithology helps differentiate glacial from 
nonglacial deposits, given that source areas for glacial 
deposits are usually other than the headwaters of the current 
streams. This technique, although not new, is finding re- 
newed use for proposing late Pleistocene glacier readvances 
(Kovanen & Easterbrook. 2001) and for interpreting bulk 
geochernistty analyses of central lowland deposits (Mahoney 
er al., 2000). 

Tectonic Setting 

Plate movement of western North America governs the struc- 
tural setting of the southwestern margin of the Cordilleran 
Ice Sheet. The Juan de Fuca plate (JDF) moves northeast and 
subducts beneath the North America plate at about 4 cm per 
year (Fig. 4a). From strike-slip plate movement farther south 
and crustal extension across the Basin and Range province, a 

series of crustal blocks between northern Oregon and south- 
em British Columbia are colliding against the relatively fixed 
buttress of Canada's Coast Mountains (Wells et al., 1998). 
The region is shortening N-S by internal deformation of the 
blocks and by reverse faulting along block boundaries. 

Both the bedrock and overlying Quaternary sediment in 
the Puget Lowland have been deformed by faults and folds as 
a result of this tectonic activity. The Seattle fault is one of sev- 
eral active structures of the Puget Lowland showing displace- 
ment in the last 10,000 years. It separates the Seattle basin 
from the Seattle uplift, two of the structural blocks involved 
in the shortening in Oregon and Washington (Fig. 4b). Its 
displacement history embraces about 8 krn of south-side-up 
movement since mid-Tertiary time (Johnson eral., 1994; Pratt 
et al.,  1997), including 7 m of uplift during a great earthquake 
1,100 years ago (Atwater & Moore, 1992; Bucknam et al., 
1992). This fault may have moved several times in the last 
15,000 years; episodic movement throughout the Quaternary 
is likely, although not yet documented. Current investigations 
suggest that a similar fault may pass west-northwest near 
Commencement Bay at Tacoma (Brocher er al., 2001). Other 
faults trending east-west or southeast-northwest cross the 
glaciated lowlands both north and south of the Seattle fault 
(Johnson et al., 1996,2001; Pratt et al . ,  1997), with likely dis- 
placements of meters to tens of meters, thereby complicating 
interpretation of the Quaternary stratigraphic record. 

Evidence of Pre-Fraser History and Depositional 
Environments 

Puget Lowland 

Abundant but fragmentary evidence of pre-Fraser glacial and 
interglacial deposition in the Puget Lowland exists in many 
geologic units named and described at type sections (Table 1, 
Figs 2 and 5). Because the evidence is scattered and discontin- 
uous, reconstructions of pre-Fraser depositional environments 
and climate are sparse. Only the two latest nonglacial periods 
(MIS 3 and 5) are well known through abundant organic- 
bearing sediments and good exposures. 

Evidence of nonglacial deposition during MIS 3 (broadly 
coincident with the Olympia nonglacial interval, defined by 
Armstrong et al., 1965) has been found in bluff exposures 
and boreholes across the Puget Lowland. These deposits 
accumulated between about 70,000yr ago and 15,000 I4c 
yr B.P.; although a time-stratigraphic unit, Olympia deposits 
also have a defined type section at Fort Lawton in Seattle 
(Mullineaux etal., 1965). During MIS 3. most of the lowlands 
of Washington were ice-free, allowing for subaerial depo- 
sition and weathering. Deposits of the Olympia nonglacial 
interval (named informally the Olympia beds in western 
Washington and the Cowichan Head Formation in south- 
western British Columbia) consist of peat, tephra, lahars, 
mudflows, lacustrine, and fluvial deposits (Fig. 6). Dozens 
of radiocarbon dates from this interval confirm nonglacial 
conditions from about 15,000 ''k yr B.P. to beyond the limit 
of radiocarbon dating (ca. 4045,000 '" yr B.P.) (Borden & 
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Fig. 4. Crustal blocks and major structures in the Puyet Lowland, showing the north-verging cornpressior~al motion and the 
i.(~r~/ltantdisplacemenr across the Seattle fault zone. Fig. 4a shows the relative motion of the western Utzited States as transferred 
to 1 1  (stern Washington (modified from Wells et al., 1998). Fig. 3b interprets the Seattle fault zone as a series of soudz-dipping 

1 O I . F (  falilts (FF =frontal fault; modified by B. Sherrod [USGS]frorn Johnson et of., 1994). 

Troost, 2001; Clague, 1981; Deeter. 1979; Hansen & 
Easterbrook. 1974; Troost, 1999). Paleoecological analyses 
in the Puget Lowland indicate a wide range of paleoenvi- 
ronments during the Olympia interval. Many locations of 
Olympia beds yield well-preserved pollen preservation with 
a predomit~ance of pine and spnrce; freshwater diatomites 
suggesting clear. shallow lakes and large littoral areas; and 
lnacrofossils including mammoth teeth and tusks. Pinus 

contortci type cones and needles, branches, leaf prints, and 
in situ tree roots (Troost, 2002). 

As expected with deposition during nonglacial periods, 
Olympia beds vary in thickness, elevation, grain size, and 
composition over short distances. Topographic relief on the 
basal unconformity of the Olympia beds near Tacoma ex- 
ceeds 230 m, 60 m of which lies below modern sea level. The 
thickest exposures of Olympia beds ( ~ 2 5  m) include multiple 
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Fig. 5. Locations oftype sections for the recognized pre-Fraser stratigraphic units in the Puget Lowland. Locations of cross 
5rcrion of Fig. 6 and measured sections in Fig. 7 are also shown. The Olympia nonglacial interval was first dejined by Armstrong 
('t crl. (1965) with its type section at Fort Lawton (Mullineaux et al., 1965). The Possession Drifi, Whidbey Formation, and 
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tIc,scribed by Willis (1  898) and formally named by Crandell er al. (1  958). 
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tephra, lahar, peat, and diatomite layers (Troost et al., 2003). 
At least five discontinuous Olympia-age tephras and lahars 
have been identified near Tacoma, with source areas including 
Mt. St. Helens and Mt. Rainier. Freshwater diatomites and 
in situ tree roots reveal lacustrine and forested environments 
across the lowland. Mastodons, mammoths, and bisonroamed 
the Puget and Fraser lowlands during this nonglacial interval 
(Barton, 2002; Hanington et al.. 1996; Plouffe & Jette, 1997). 

The next-oldest Pleistocene sediment in the Puget Low- 
land is the Possession Drift, probably related to glaciation 
during MIS 4 (Easterbrook, 1994) (Fig. 7a). The ice sheet 
responsible for this drift may have been less extensive 
than during MIS 2, according to reconstructions of global 
temperature. Away from the type section on Whidbey Island, 
pre-Fraser glacial deposits cannot be uniquely correlated 
with Possession Drift without age control. Thermolumi- 
nesence dating may prove most useful in this age range 
(Easterbrook. 1994), with preliminary results suggesting 
localities of Possession-age outwash south of the type section 
(Easterbrook, 1994; Mahan et al., 2000). 

The Whidbey Formation and its counterpart in British 
Columbia, the Muir Point Formation, correlate with MIS 

Qpog. = 6re'-0lympia glac~al drifi (coarse) S~lUclayitephralpeat and 
Qpon = Pre-Olympia nongbcial sediment diatomaceous sediment 
Qrn = Reversely polarized nonglacial deposits ~ 7 2 0 1  paleomagnetlc sample 

5, the youngest full interglacial interval of the Pleistocene 
record. Climate was similar to that of today, with sea level 
perhaps slightly above today's level and as much as 60m 
lower (Easterbrook, 1994; Easterbrook et al., 1967). At its ! 

type section (Easterbrook, 1994) (Fig. 7b), the Whidbey 
Formation includes silt, sand, gravel, ash, and diatomite. 
On Whidbey Island, extensive sand deposits may be deltaic 
in origin. Like Olympia nonglacial deposits, sedimentary 
layers surely vary in thickness and composition over short 
distances; relief on the upper surface of the Whidbey 
Formation probably resembles today's landscape relief. 
Difficulties in dating sediments of this age, however, provide 
few constraints on the paleotopography from this time. 

Still older mid- and early-Pleistocene deposits in the 
Puget Lowland include the Double Bluff Drift (Easterbrook, 
1994) (Fig. 7b) and various unnamed glacial and interglacial 
deposits in the interval from 250,000 to 780,000 years 
ago, the existence of which are anticipated from climatic 
fluctuations expressed by the marine isotope record. Recent 
chronological and stratigraphic correlation efforts have 
begun to identify deposits in this age range and to confirm the 
presence of pre-Fraser deposits at locations away from their 

Fig. 7. Measured sections at pre-Fraser localities on and near Whidbey Island and in the Puyullup River valley (reproduced 
from Easterbrook, 1994), and at Fort Luwton in Seattle. Fig. 7a depicts both the Possession Drift and the Whidbey Formation at 
Point Wilson. Fig. 76 shows the lithologies noted at the rype locality of the Double BluffDrijl. Fig. 7c depicts the stratigraphic 
rell~tionships between the Puyallup Formation, Stuck Drif, and Alderton Formation at the Alderton rype localiry; black dots 
depict reversely polarized samples. Fig. 7d shows the modern exposure at the rype locality for deposits of the Olympia nonglaciul 
interval, and for the Lawton Clay Member and Esperance Sand Member (the latter now generally mapped as Vashon advance 
outwmh) of the Vushon Drift (Mullineaux et al., 1965). 



The Cordilleran Ice Sheet 27 

till 

laminated sllt 

C 
0 

5 
2 

!C) 

y. 7. 

glriomarv* drill 

TL age 177+ 38 103 yr 

z 
n I 0 a - 0  * I  0 . . 



28 Derek B. Booth et al. 

type sections (Hagstrum et al., 2002; Mahan et al.,  2000: 
Troost et al., 2003). The oldest pre-Fraser deposits, about 1 
million years old and older, are the Salmon Springs Drift, 
Puyallup Formation, Stuck Drift, Alderton Formation, and 
Orting Drift (Crandell, 1963; Westgate et al., 1987) (Fig. 7c). 

Eastern Washington 

Discontinuous drift extending beyond the limits of Fraser-age 
drift in the Pend Oreille, Columbia, and Little Spokane val- 
leys has stones that are highly weathered or deeply penetrated 
by cracks, has a slightly argillic soil, and overlies granite and 
gneiss bedrock that is highly decayed, even to grus. These 
characteristics indicate that the drift is pre-Fraser in age. Di- 
rect dating of pre-Fraser sediments is poor, but radiocarbon 
dates in Canada have been interpreted as denying the existence 
of an ice sheet between 65,000 and 25,000 yr B.P. (Clague, 
1980), consistent with nonglacial conditions west of the Cas- 
cade Range during this time. The weathering of the drift and 
surrounding bedrock in places is so suong as to suggest an age 
very much older than late Wisconsin - equivalent to MIS 6 
(160,000-130,000 years ago) or older. In northeastern Wash- 
ington and adjacent Idaho, however, there is no objective basis 
for Richmond's (1986, Chart 1) assignment of any of these 
deposits to particular time intervals. 

Probably there were several pre-Wisconsin Cordilleran 
ice-sheet glaciations in eastern Washington and farther east 
in Idaho and Montana. Glacial Lake Missoula and great 
floods from it are possible only when the Purcell Trench lobe 
advances far enough south (to 48"101 N) to dam the Clark 
Fork of the Columbia. In southern Washington, deposits 
resembling Fraser-age Missoula-flood gravel bars but thickly 
capped by calcrete deeply underlie some of these Fraser 

Fig. 8. Growth of the Cordilleran Ice Sheet during 
the Fraser glaciation (from Clague, 1981). 

deposits. One such gravel was dated to between 200,000 and 
400,000 T h N  yr ago and another to before 780,000 Th/U yr 
ago (Bjornstad et ( I / . ,  2001). 

Chronology of the Fraser Glaciation 

The Cordilleran Ice Sheet most recently advanced out of 
the mountains of British Columbia about 25,000 "C yr 
B.P. It flowed west onto the continental shelf, east into 
the intermontaine valleys of British Columbia where it 
probably merged with the western edge of the Laurentide 
Ice Sheet, and south into the lowlands of Washington State 
(Fig. 8, Table 1). In southern British Columbia and western 
Washington the Puget lobe filled the Fraser Lowland and 
the Puget Lowland between the Olympic Mountains and 
Cascade Range. The Juan de Fuca lobe extended east along 
the Strait of Juan de Fuca to terminate some 100 km west 
of Washington's present coast. Several ice lobes east of the 
Cascade Range expanded south down the Okanogan Valley 
and down other valleys farther east. The Fraser-age ice-sheet 
maximum on both sides of the Cascade Range was broadly 
synchronous (Waitt & Thorson, 1983). It approximately 
coincided with the maximum advance of some parts of the 
Laurentide Ice Sheet in central North America at about 
14,000 I4c yr ago. but lagged several thousand years behind 
the culminating advance of most of the Laurentide Ice Sheet 
(Lowell et al., 1999; Mickelson et al., 1983; Prest, 1969). 

Northern Puget LowlandSouthern Fraser Lowlands 

The Fraser glaciation began about 25,000 I4c yr B.P. with the 
expansion of alpine glaciers in the Coast Mountains of British 

Existing Ice fields 
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~:olumbia, the Oly~npic Mountains. and the Cascade Range 
. ~ f  LVushington. Glaciers in the Coast Mountains coalesced to 
'orm piedmont ice lobes that reached the Fruser Lowland of 
,3ritish Columbia about 21,000 14c yr B.P. during the Co- 
luitlam stade (Hicock & Armstrong, 1981 ). The Coquitlam 
xade correlates with the Evans Creek stade of Washington, 
.,n early alpine phase of the Fraser glaciation in the Cascade 
Range ( Armstrong et al., 1965). 

The Coquitlam stade was followed by a period of 
Jimatic amelioration that lasted from about 19,000 to 
18.000 " ~ y r  B.P. - the Port Moody interstade of Hicock & 
Ismstrong (1985). The Port Moody interstade was in turn 
!'allowed by the late Wisconsin advance of the Cordilleran 
ice Sheet during the Vashon stade (Armstrong et ul., 1965). 
The Puget lobe advanced into northern Washington about 
17,000 yr B.P. (Clague, 1981; Easterbrook, 1986) and re- 
reated rapidly from its maximum position around 14,000 yr 
S.P. (Clague. 1981; Easterbrook, 1986; Porter & Swanson, 
i 098). 

The Vashon stade was followed by a period of rapid 
[rid extensive glacier retreat (Everson interstade) that 
xded  with a resurgence of the southwestern margin of the 
!:ordilleran Ice Sheet in the Fraser Lowland about 12,000 
I i C yr B.P. (Sumas stade) (Clague er a / . ,  1997; Kovanen, 

2002; Kovanen & Easterbrook. 200 1). Several advances 
cparated by brief periods of retreat apparently marked the 
',urnas stade. The final advance(s) occurred 1 1,000 "C yr 
'3.P. or shortly thereafter. Soon after 10,500 "C yr B.P., 

the Cordilleran Ice Sheet rapidly disappeared from the 
lowlands. 

Central Puget Lowland 

Rates of ice-sheet advance and retreat are well con- 
strained in the central Puget Lowland. The Puget 
lobe advanced to the latitude of Seattle by about 
14,500 14c yr B.P. ( 17,590 cal yr B.P.) and to its maximum by 
14,000 I4c yr B.P. ( 16.950 cal yr B.P.) (Porter & Swanson, 
1998). The ice apparently remained near its maximum posi- 
tion only a few hundred years and then rapidly retreated. It re- 
treated past Seattle by 13,600 "C yr B.P. ( 16,575 cal yr B.P.) 
(Porter & Swanson, 1998) (Fig. 9). Glacial lakes, including 
Lake Russell, formed south of the retreating ice front, drain- 
ing through a spillway to the Chehalis River (Bretz, 1913). 
The lakes coalesced into one lake, Lake Bretz (Lake Leland 
of Thorson, 1980), whlch enlarged northward as the ice front 
retreated until a northern spillway was uncovered. Further 
backwasting allowed sea water to enter the lowland from the 
Strait of Juan de Fuca. Glaciomarine drift and other marine 
deposits accumulated in the northern lowland where land had 
not yet rebounded from isostatic depression. This interstade - 
named the Everson by Armstrong et a / .  (1965) - ended about 
12,000 "C yr B.P. Isostatic rebound raised the glaciomarine 
and marine deposits above sea level between about 13,500 
and 1 1,300 "C yr B.P. (Dethier et al., 1995). 

Fig. 9. Rates of Puger lobe advance and retreat 
in the Puget Lowland during the Vashon stade 
(modified from Porter & Swanson, 1998). Rapid 
advance and retreat are required to honor the 
limiting radiocarbon dates from Lake Carpenter; 
Seattle, Bellevue, and Issaqunh. Maximum ice- 
sheet extent could have persisted at most a few 
hundred years. 
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Eastern Washington 

In contrast to the tight age constraints west of the Cas- 
cade Range, limits on the Fraser maximum east of the 
Cascades and Coast Mountains are broad. They include a 
date of 17,240 "C y r ~ . ~ .  for proglacial advance outwash, 
IOOkrn north of the ice limit, followed by advance to 
the glacier maximum, then a retreat of at least 80 km by 
1 1,250 yr B.P., judged partly on the distribution of Glacier 
Peak tephra layer G (Clague et al., 1980; Mehringer et al., 
1984; Porter, 1978). Lake Missoula flood deposits, interbed- 
ded with varves of glacial Lake Columbia that contain detrital 
wooddated 14,490 "C yr B.P., suggest that the Purcell Trench 
lobe blocked the Clark Fork for 2000-3000 yr and reached 
its maximum extent about 15,000 I" yr B.P. (Atwater, 
1986). 

Sea-Level Record 

Changing sea levels greatly altered the shorelines of the 
Pacific Northwest. Variations in relative sea level, ranging 
from 200 m above present sea level to more than I00 m below, 
are the integrated result of eustasy, isostasy, and tectonism. 
These phenomena are difficult to assess separately, however, 
because eustasy and isostasy are interdependent and because 
the eustatic component has proven particularly difficult to 
quantify. 

Eustasy 

Global Record 

Eustatic sea-level changes are global and are caused mainly 
by changes in volume of ocean water. Fluctuating continental 
glaciers are the most important cause of eustatic sea-level 
change on the time scale of concern here - sea level falls 
when ice sheets grow and rises when they shrink. Seawater 
also decreases in volume as it cools, which further lowers sea 
level during glaciations. 

The growth and decay of large ice sheets during the Pleis- 
tocene caused sea level to fluctuate by 120-140 m (Fairbanks, 
1989; Lambeck et al., 2000, 2002; Peltier, 2002; Yokoyama 
et al., 2000). Estimates of sea-level lowering during the last 
glaciation (MIS 2) derive from fossil corals in Barbados, New 
Guinea, and Tahiti (Bard etal., 1990a, b, 1993,1996; Chappell 
& Polach, 1991 ; Fairbanks, 1989) and from more recent sedi- 
ment cores taken from the Sunda Shelf (Hanebuth et al., 2000) 
and Northwest Shelf of Australia (Yokoyama et al., 2000). 
Eustatic sea-level changes have also been estimated from 
variations in the oxygen-isotope composition of air in bubbles 
trapped in the Greenland and Antarctica ice sheets (Dansgaard 
et al., 1971; Epstein et al., 1970; Grootes etal., 1993; Johnsen 
et LII., 1972; Jouzel et al., 2002; Lorius et al., 1985; Petit et al., 
1999) and in foraminifera in ocean sediment (Chapman & 
Shackleton, 1999; Chappell & Shackleton, 1986: Lea et al., 
2002; Shackleton, 1987; Waelbroeck et al., 2002). Numeric 
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Fig. 10. Eustatic sea-level curve based on dating of shallow- 
water corals at Barbados (afrer Fairbanks, 1989). 

modeling and geologic data (summaries in Clark & Mix, 
2002) provide equivalent sea-level lowering of 118-130m 
for the volume of ice locked in glaciers at the last glacial 
maximum. 

Eustatic sea level rose after about 18,000 "C yr B.P. 
as ice sheets in the Northern Hemisphere began to decay. 
Sea-level rise accelerated after about 15,000 ['c yrB.P. and 
remained high until about 7000 "C yrB.P. when the Lauren- 
tide Ice Sheet had largely disappeared (Fig. 10; Fairbanks, 
1989). Rates of eustatic sea-level rise were exceptionally 
high between about 1 1,000 and 10,500 "C yr B.P. and 
between 9000 and 8000 "C yr B.P. After 7000 '9 yr B.P., 
the rate of eustatic sea-level rise sharply decreased, and 
by 4000 I'c y r ~ . ~ .  sea level was within 5 m of the present 
datum. 

Regional Expression 

It is difficult to disentangle the eustatic and glacio-isostatic 
components of the sea-level record in Washington and British 
Columbia. Isostatic depression and rebound dominate the late 
Pleistocene sea-level record in peripheral areas of the former 
Cordilleran Ice Sheet, but these effects decrease with distance 
beyond the ice margin. Estuaries in southwestern Washing- 
ton record a mostly eustatic response, with the river valleys in 
this area drowned by rising sea level when ice sheets melted. 
In southwestern British Columbia and the northern Puget 
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Lowland, in contrast, relative sea level during deglaciation controlled deposition of thick bodies of advance outwash (the 
was higher than at present because these areas were isostati- Quadra Sand in British Columbia and the Esperance Sand in 
cally depressed during the last glaciation. western Washington) on braided floodplains and deltas, and 

in littoral environments (Clague, 1976). As the Puget lobe 
reached its limit near the city of Olympia, the region to the 

Isostasy 
north was isostatically depressed. The depression was great- 
est beneath the Strait of Georgia and Fraser Lowland and 

Global Record 
decreased south along the h g e t  Lowland. 

The growth and decay of ice sheets. and thus changes in global 
sea level, redistributed mass on the Earth's surface. Ice sheets 
depressed the crust beneath them, but just beyond their mar- 
gins the crust warped as a "forebulge" (Walcott, 1970). Melt- 
ing ice sheets reversed the process: the forebulge migrated 
back towards the former center of loading to cause uplift there. 

Water transfer from oceans to ice sheets unloaded 
the seafloor; the opposite happened during deglaciation. 
These hydro-isostatic adjustments opposed the direction of 
glacio-isostatic adjustments. Continental shelves rose when 
seawater was removed and they subsided again when melting 
ice sheets returned water to the oceans. 

Regional Expression 

Expanding glaciers during the early part of the Fraser glacia- 
tion progressively depressed the land surface of southwest- 
em British Columbia and northwestern Washington (Clague, 
1983). This depression started beneath the Coast Mountains, 
where glaciers first grew. As glaciers continued to advance, 
the area of crustal subsidence expanded beneath coastal ar- 
eas. Subsidence probably exceeded the eustatic fall in sea 
level as ice sheets grew between 25,000 and 15,000 yr B.P. 
(Chappell et al., 1996; Lambeck er al., 2002; Shackleton, 
1987; Waelbroeck et al., 2002). If so, relative sea level in the 
region rose during this period. The relative rise in sea level 

The height of the uppermost shorelines that forilled 
during deglaciation gives some limits on isostatic depression. 
Marine deltas near Vancouver lie 200m above present sea 
level (Clague et al., 1982). With eustatic sea level- 100 m at 
the time the highest shorelines formed (Fairbanks. 1989), 
local glacio-isostatic depression must have exceeded 300 m. 
The depression was actually larger, because the Cordilleran 
Ice Sheet had thinned before the highest shorelines formed, 
and thus rebound had started already. 

The modern altitudes of the late-glacial marine limit 
display the variable isostatic influence of the Cordilleran 
Ice Sheet. The marine limit is highest around the Strait of 
Georgia and in the Canadian part of the Fraser Lowland, and 
it declines west and south (ciague et al., 1982: Dethier et al., 
1995; Mathews et al., 1970). From about 125 to 150 m above 
sea level (asl) near Bellingharn, it drops to 70m as1 west 
of Victoria, below 50m as1 on the west coast of Vancouver 
Island at Tofino, and probably below 50m as1 near the 
entrance to Juan de Fuca Strait. The marine limit decreases 
south of Bellingham to about 35 m as1 at Everett. At the 
heads of the British Columbia mainland fiords to the north, 
the marine limit is fairly low because these areas remained 
ice-covered until isostatic rebound was well along (Clague 
& James, 2002; Friele & Clague, 2002). 

Isostatic uplift rates can be inferred from a variety of 
shoreline data. Proglacial lakes covered southern and central 
h g e t  Lowland during deglaciation (Fig. l l ) ,  the lakes 

, 

GLACIAL LAKE RUSSELL GLACIAL LAKE BRETZ 

Fig. I I .  Paleogeographic maps showing the tnaxinlunl e.rtents of Lake Russell and Lake Bretz (modiJied from Thorson, 1989, 
Fig. 2). Arrows show spillway locations controlling loccll and regional lake altitudes. 



32 Derek B. Booth et r r l .  

SOUTH 
120 r 

NORTH 
1120 

Dra~nage 
north out 

Leland Ck 

Dra~nage * 
south out A' 
alack Lake 04d 

0 1 I I I I I I I I I I I I I l o  
0 20 40 60 80 100 120 140 

Distance north of Vashon ice limit (km) 

Sp~llway - 

,a/* 
L l f l p  

$80z , 
9 / Dra~nage - 

north out . 
Stralt of 

Juan de Fuca - 
7 

Fig. 12. North-south profile of shoreline features (delta tops) associated with Lake Russell, Lake Hood (confluent with Lake 
Russell), Luke Bretz, and the marine limit near Discovery Bay on the south side of the Strait of Juan de Fuca Strait (modiJied 
from Thorson, 1989, Fig. 5; with additional data from Dethier et al., 1995). 
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were dammed to the north by the retreating Puget lobe. 
The last lake drained when the Puget lobe retreated north 
of Port Townsend and marine waters entered Puget Sound. 
Differential isostatic rebound warped the shorelines of these 
proglacial lakes (Fig. 12) - shorelines of Lake Russell-Hood 
are tilted up to the north at 0.85 mhn; the tilt of Lake Bretz 
shorelines is 1.15 m/km (Thorson, 1989). Most uplift in the 
Fraser Lowland and on eastern Vancouver Island occurred 
in less than 1000 years (Clague et al., 1982; Mathews et al., 
1970), as inferred from the shoreline tilt data and relative 
sea-level observations. These data underlie a postglacial 
rebound model of the Cordilleran Ice Sheet (Clague &James, 
2002; James et al., 2000) that predicts low mantle viscosities 
( < 10" Pa s). 

Besides rapid rebound, low mantle viscosities in this 
region are responsible for nearly complete glacio-isostatic 
uplift by the early Holocene (Clague, 1983). Relative sea level 
was lower 8000-9000 14c yr B.P. than it is today, by at least 
15 m at Vancouver (Mathews et al., 1970) and by perhaps 
as much as 50m in Juan de Fuca Strait (Hewitt & Mosher, 
2001; Linden & Schurer, 1988). Evidence for lower sea 

C 
0 .- 'a 2 3 1 Coast Southern Eastern Mountains Vanwuver Vancouver (fiords) Island Island 

C .- - 
0 . . . . .  .................................. 

0 
z ? % Q Q  

Age ("C yr B.P.) 

Fig. 13. Generalized patterns of sea-level change on south 
coast of British Columbia since the end of the last glaciation 
(Clague & James, 2002, Fig. 8; modiJied from Muhs et al., 
1987, Fig. 10). Deglaciation and isostatic rebound occurred 
later in the southern Coast Mountains than on Vancouver 
Island. Line widths display range of uncertainty. 

I 
levels includes submerged spits, deltas, and wave-truncated 

b 

surfaces on the floor of Juan de Fuca Strait, and buried 
terrestrial peats found well below sea level in the Fraser 
Lowland. Sea level seems to have tracked global eustatic 
sea-level rise thereafter (Clague et al., 1982; Mathews et al., 

i .p 

1970), except on the west coast of Vancouver Island where 
sea level was several meters higher in the middle Holocene 
than now (Clague et al., 1982; Friele & Hutchinson, 1993). 
Tectonic uplift probably caused this anomaly (see below). 

Isostatic uplift occurred at different times in southwestern 
British Columbia and northwestern Washington as the I 
Cordilleran Ice Sheet retreated. Regions that deglaciated 
first rebounded earlier than those deglaciated later (Fig. 13). 
Glacio-isostatic response to deglaciation varied across the re- 
gion, showing that the lithosphere responded non-uniformly 

1 
as the ice sheet decayed (Clague, 1983). I 

I 

Tectonics 

Trends in elevations of the late-glacial marine limit and the 
patterns of sea-level change summarized above show that 
much of the crustal deformation is isostatic. Slippage on reac- 
tivated faults, however, may have caused some of the observed 
deformation, analogous to recognized movement on some 
faults in the Puget Lowland later in the Holocene (Bucknam 
et al., 1992; Johnson et al., 1996, 2001). As yet, no such 
late-glacial or early postglacial fault movements have been 1 
documented unequivocally. 

Late Quaternary sea-level change in the coastal Pacific 
Northwest also includes a component of aseismic tectonic 
deformation, but the rates of such vertical motions are at least 
an order-of-magnitude less than those of late-glacial eustatic i 
and glacio-isostatic sea-level change and so cannot be isolated 1 
from those signals. However, the much slower changes in 
late Holocene sea level may include a significant component 
of aseismic tectonic deformation, which may partly explain 
the late Holocene regression on the west coast of Vancouver 
Island (Clague et al., 1982; Friele & Hutchinson. 1993). 



;'hysical Behavior of the Cordilleran Ice Sheet 

[he Puget lobe of the Cordilleran Ice Sheet during the last 
:laciation provides an exceptional opportunity to exanline 
.he connection between glacier physics and the geomorphic 
,~roducts of the glacier system. Such an approach to interpret- 
ing the deposits and landforms of glaciated terrain has been 
widely applied only in the last several decades. The Puget 
lobe is not necessarily typical of every continental ice lobe, 
having a strong maritime influence. However, it is particularly 
well-constrained, with good age control, clearly recognized 
boundaries, moderately definitive source area, and good ex- 
pression of its topographic effects and sedimentary deposits. 

Ice-Sheet Reconstruction 

By applying a height-mass balance curve (Porter et al., 1983) 
over the reconstructed boundaries and surface altitudes of 
the Puget lobe, an ELA between 1200 and 1250 m balances 
the ice sheet (Booth, 1986). The ice flux peaks at the ELA, 
while meltwater flow increases monotonically downglacier 
(Fig. 14). The contribution to ice velocity from internal ice de- 
formation (Paterson, 1981), based on reconstructed ice thick- 
ness and surface slope, is less than 2% of the total flux (Booth, 
1986). Thus, basal sliding must account for virtually all of 
the predicted motion, several hundred meters per year over 
nearly the entire area of the lobe. From lobe dimensions, the 
calculated basal shear stress of the ice ranges between 40 and 
50 kPa (Booth, 1986; Brown et al., 1987). This value is low 
by the standards of modem valley glaciers but typical of ice 
streams and large modem ice lobes (Blankenship et al., 1987; 
Mathews, 1974; Paterson, 198 l ) ,  whose sliding velocities are 
also hundreds of meters per year. The system was thus one of 
rapid mass transport under a rather low driving stress across 
a bed of mainly unconsolidated sediment. 
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Fig. 14. Pattern of ice and waterfluxes alorig the Puget lobe, 
reconstructed at ice-maximum conditions (fram Booth, 1986). 

Average pore-water pressures across the glacier bed 
closely approached the ice overburden, because so much 
water cannot be quickly discharged (Booth, 1991a). even 
through an extensive subglacial tunnel system. Thus, the ice 
loading of bed sediments was low except near the margins, 
and the strength of the sediments correspondingly poor; 
shearing and streamlining would have been widespread. The 
modem landscape amply testifies to these processes (Fig. 15). 

Meltwater 

The Puget Lowland basin became a closed depression once 
the ice advanced south past the entrance of the Strait of Juan 
de Fuca and blocked the only sea-level drainage route. La- 
custrine sediment (e.g. Lawton Clay Member of the Vashon 
Drift; Mullineaux et al., 1965) accumulated in ice-dammed 
lakes, followed by fluvial outwash (Esperance Sand Mem- 
ber of the Vashon Drift) that spread across nearly all of the 

Fig. 15. Shaded topographic view of the 
central Puget Lowland, showing strongly 
streamlined landforms from the passage of 
the Puget lobe ice sheet during the Vashon 
stade. Modem marine waters of Puget Sound 
in black; city of Seattle is in the south-central 
part of the view. Nearly all streamlined to- 
pography is underlain by deposits of the last 
glaciation. 



34 Derek B. Booth et a/. 

Fig. 16. Topography of the Puget Lowland, from U.S. Geo- 
logical Survey 10-m digital elevation model. Contours show 
generalized topography of the great Lowland $11 (modijied 
from Booth, 1994). as subsequently incised by both subglacial 
channels and modern river valleys. Its modem altitude lies 
between 120 and 150m across most of the lowland, recon- 
structed from the altitude of modem drumlin tops. 

Puget Lowland. The outwash must have prograded as deltas 
like those that formed during ice recession (Thorson, 1980). 
With the greater time available during ice advance, however, 
sediment bodies coalesced into an extensive outwash plain 
in front of the ice sheet (e.g. Boothroyd & Ashley, 1975), 
named the "great Lowland fill" by Booth (1994) (Fig. 16). 
With continued ice-sheet advance and outwash deposition. 
this surface ultimately would have graded to the basin outlet 
in the southern Puget Lowland. Crandell et al. (1966) first sug- 
gested that this deposit might have been continuous across the 
modem arms of Puget Sound; Clague (1976) inferred a cor- 
relative deposit (Quadra Sand) filled the Georgia Depression 
farther north. 

The fill's depositional history lasted 2000-3000 years. 
Outwash of the ice-sheet advance did not inundate the Seattle 
area until shortly before 15.000 yr B.P. (Mullineaux 
et a!., 1965). Deposition may have begun a few thousand 
years earlier, but accumulation would have been slow until 
advancing ice blocked drainage out of the Strait of Juan de 
Fuca (about 16,000 ''c yr B.P.). Although late in starting, 
deposition across the entire lowland must have been complete 

Fig. 17. Shaded topography of the Puget Lowland from U.S. 
Geological Survq 10-m digital elevation model, displaying 
the major subglacial drainage channels of the Puget lobe. 
Most are nowjlled by marine waters (black), with others by 
late-glacial and Holocene alluvium and mudjows (dark gray 
stipple). 

before the ice maximum at about 14,000 I4c yrB.P. (Porter 
& Swanson, 1998) because basal till of the overriding ice 
sheet caps the great Lowland fill almost everywhere. 

Incised up to 400 m into the fill (and the overlying till) are 
prominent subparallel troughs (Fig. 17), today forming one of 
the world's great estuarine systems. These troughs were once 
thought to result from ice tongues occupying a preglacial 
drainage system (Willis, 1898), preserving or enhancing a 
topography of fluvial origin. This scenario is impossible, 
however, because impounded proglacial lakes would have 

I 
floated the ice tongues and precluded any bed contact or j 
ice erosion. Incision by subaerial channels is impossible 
because the lowest trough bottoms almost 300m below the i 
southern outlet of the Puget Lowland basin, and Holmes 
et al. (1988) report seismic-reflection data that suggest I 
that the troughs were excavated during ice occupation to ! 

1 

more than twice their current depth. Thus, troughs must 
have been excavated after deposition of the great Lowland 
fill. Yet the troughs must predate subaerial exposure of the 
glacier bed during ice recession, because many of the eroded 

1 
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I , . , l , lgh~ are still mantled on their flanks with basal till (e.g. 
I ; ~ I O ~ ~ .  1991b) and filled with deposits of recessional-age 
!;,kss (Thorson. 1989). Thus. the troughs were formed 
,,rimarily (or exclusively) by subglacial processes and 
i,l~rb:~hly throughout the period of ice occupation, chiefly 
! I \ ,  subglacial meltwater (Booth & Hallet, 1993). A similar 
11ftrcnce explains Pleistocene glacier-occupied troughs and 

![innel valleys of similar dimensions and relief elsewhere in 
hc. Northern Hemisphere: Germany (Ehlers, 198 l) ,  Nova 

.;cotia (Boyd et al., 1988). New York (Mullins & Hinchey, 
I innesota !1189), Ontario (Shaw & Gilbert, 1990), and M' 

I Putterson, 1994). 

1 li.ssou1a Floods 

!luring several glaciations in the late Pleistocene, the 
C'ordilleran Ice Sheet invaded Columbia River drainage and 
r~,mporarily deranged it. The Purcell Trench lobe thwarted 

the Clark Fork of the Columbia to darn glacial Lake Missoula 
(Fig. 18) with volumes of as much as 2500 km3 -as much wa- 
ter as Great Lakes Erie and Ontario together contain today. 
Stupendous floods from the lake swept the north and central 
part of the Columbia Plateau to carve a plexus of scabland 
channels as large as river valleys. 

In the 1920s. J Harlen Bretz argued an astonishing idea: 
the Channeled Scabland originated by enormous flood (Bretz, 
1923. 1925, 192% b, 1929, 1932). His scablands evidence 
included gigantic water-carved channels, great dry cataracts 
(Fig. 19), overtopped drainage divides, and huge gravel bars. 
But with no known water source, skeptics in the 1930s-1940s 
tried to account for the scabland channels by mechanisms 
short of cataclysmic flood. such as by sequential small floods 
around many huge ice jams. Then Pardee (1912) revealed 
giant current dunes and other proof of a colossal outburst of 
glacial Lake Missoula. Thus, a source for Bretz's great flood 
had been found. In the 1950s, Bretz himself vindicated his old 
story (Bretz et al., 1956). Baker (1973) showed that Bretz's 

f'ig. 18. Map of Columbia River valley and tributaries. Dark cross-hatching shows maximztm extent of Cordilleran Ice Sheer; 
'ine stipple pattern shows maxinzutn area of glacial Luke Missoula east of Purcell Trench ice lobe and tnnximum extent of glacial 
f-ake Columbia east of Okanogan lobe. Dashed-line pattern shows area that was swept by the Missoulajloods in addition to 
:Ilese lrkes. Large dots indicate ke-v localities: B, Burlingame ravine; L, Lotah Creek; M, Mabton; N, Ninemile Creek; 19 Priest 
1,trlley; S, Sanpoil valley; Z, Zillrrh. From Wairt (1985, Fig. 1). Relations at sites B. P, imd N shown .schematically on Fig. 21. 
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Fig. 19. Topographic map of Great Cataract Group, including Dry Falls in Grand Coulee (center of map). From U.S. Geological 
Survey 7.5-minute Park Lake and Coulee C i v  quadrangles. Contour interval lop. hnd-gr id  squares (Township sections) are 
1 mile (1.6 km) on a side. Top is north. 

observations were in accord with principles of open-channel 
hydraulics. Bretz's old heresy now wore respectable clothes. 

In the high-velocity, high-energy scabland reaches, one 
great flood eroded evidence of any earlier ones. But the waters 
also backflooded up tributary valleys and quietly deposited 
suspended load there in transitory hydraulic ponds. Within 
stacks of rhythmic beds in southern Washington (Fig. 20), 
the Mount St. Helens "set-S" ash couplet ( 1  4,000 "C yr B.P.) 
lies atop a floodlaid bed identical to other beds in these 
sections. This, and other evidence, shows that each graded 
bed is the deposit of a separate great flood. Numerous sites 
across the region tell a similar story of scores of separate 
floods (Atwater, 1984, 1986; Waitt, 1980, 1984, 1985, 1994). 
All together there were probably 95-100 Missoula floods 
during the last glaciation. 

In northeastern Washington and Idaho, glacial lakes 
dammed along the Cordilleran ice margin (Fig. 18) accu- 
mulated sand-silt-clay varves. These beds are interrupted by 
many thick, coarse floodlaid beds. The numbers of varves 
indicate periods of six decades to a few years between succes- 
sive floods (Atwater, 1984, 1986; Waitt, 1984, 1985). The only 
water body big and high enough to flood these glacial lakes 
was Lake Missoula. The sediment of Lake Missoula itself 
comprises dozens of fining-upward vane sequences, each the 
record of a gradually deepening then swiftly emptying lake 
(Chambers, 1971; Waitt, 1980). Fig. 21 relates the deposits 
across the region. The rhythmic beds of southern Wash- 
ington record the floods, Lake Missoula bottom sediment 
records interflood periods, and the northern lake deposits 
record both. 

East of the Cascade Range, the Fraser-age Cordilleran 
Ice Sheet is bracketed in time by preglacial dates as 
young as 17,200 IJcyr  B.P. and postglacial dates as old as 
1 1,000 "C yr B.P. in southern British Columbia, 150-300 km 
north of the ice limit (Clague, 1981, 1989). Dammed at 

the ice terminus, Lake Missoula existed less than half this 
period. Fewer than 2500 varves are known from Lake 
Missoula bottom sediment or between Missoula-flood beds 
in other glacial lakes (Atwater, 1986; Chambers, 1971). 

Fig. 20. Rhythmically bedded Missoula-backjood deposits at 
B~irlinganre ravine, Wallo Wnlla valley (site B of Fig. 18). Each 
graded bed is the deposit of a s~para te jood .  
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:()carbon ages and proxy ages further limit the age of 
r1oods. Atwater (1986, Fig. 17) dated a wood fragment at 
:90 yr B.P. in the lower-middle of the Missoula-flood 
IL.nce in Sanpoil Valley. In Snake Valley, 21 Missoula- 
\flood couplets (Waitt, 1985) overlie gravel of the great 
(1 from Lake Bonneville (ca. 14,500 '" y r ~ . ~ . ;  Oviatt 

. / I . ,  1992). The 14,000-yr-B.P. Mount St. Helens ash 
;@let overlies at least 28 giant-flood rhythmites in southern 
ihington and underlies eleven (Waitt, 1980, 1985). After 
'-e giant floods came several dozen smaller Missoula 
>ds (Waitt, 1994). Organic matter within and below 
:soula flood deposits in the Columbia gorge yielded three 
es between 15,000 and 13,700 ''c yr B.P. (O'Connor & 
itt. 1995). The 11,250 I" y r ~ . ~ .  Glacier Peak tephra 

'chringer et al., 1984) postdates ice-sheet retreat in 
thern Washington and Montana (Waitt & Thorson, 1983). 
tse various limits suggest that glacial Lake Missoula 

,sted for 2000 years or so during the period 15,700- 
500 "C y r ~ . ~ .  
. . 
I he controlling Purcell Trench ice dam became pro- 

:,sively thinner during deglaciation. Shallower lake levels 
1.c required to destabilize the smaller ice dam. Floods 
in the lake thus became smaller and more frequent. The 
,rage period between floods indicated by varves is about 
years. At the glacial maximum it was much longer, and 

late during deglaciation i t  was much shorter. Atwater's varve 
counts (1 986) detail a near-continuous record of the Missoula 
floods. The period between floods was about 50 years at 
the glacial maximum and during deglaciation decreased 
successively to 30, 20, and fewer than 10 years. 

A recurring discharge every few decades or years suggests 
that glacial Lake Missoula emptied by a recurring hydraulic 
instability that causes glacier-outburst floods (jokulhlaups) 
from modern Icelandic glaciers (Waitt, 1980). As the water 
deepens against the ice dam, it buoys the lakeward end of 
the dam. Subglacial drainage occurs when the hydrostatic 
pressure of water from the lake exceeds the ice overburden 
pressure at the glacier bed (Bjomsson, 1974; Clarke et a / . ,  
1983; Waitt, 1985). Drainage begins, and ice tunnels enlarge 
swiftly. The tunnel roof collapses; the whole lake drains. 
Glacier flow then repairs the damage, and within months the 
lake basin begins to refill. 

The peak flow of Missoula floodwater down 10-km-wide 
Rathdrum Valley as modeled by O'Connor & Baker (1992, 
Figs 7 and 8) was at least 17 million m3/s. More recent 
modeling suggests peak discharge almost twice that (Waitt 
et cri., 2000). During deglaciation the thinning ice dam fails at 
progressively shallower lake levels. Calculations suggest the 
Missoula floods ranged in peak discharge from as much as 30 
million to as little as 200,000 m3/s (Waitt, 1994). The largest 
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were the Earth's grandest freshwater floods. Even a lake 
volume only one-third of maximum sufficed for a mighty 
flood down the Channeled Scabland and Columbia valley. 

Summary 

Advances in both global and regional understanding of Qua- 
ternary history, deposits, and geomorphic processes have 
brought new information and new techniques to characterize 
the growth, decay, and products of the Cordilleran Ice Sheet 
during the Pleistocene. Ice has advanced south into western 
Washngton at least six times, but the marine-isotope record 
suggests that these are but a fraction of the total that entered 
the region in the last 2.5 million years. Several glacial and 
interglacial deposits are likely in the interval from 780,000 to 
250,000 years ago but are not yet formally recognized. Growth 
and decay of large ice sheets during the Pleistocene have 
also caused sea level to fall and rise about 120-140 m, with 
strong influence on the tidewater margins of the Cordilleran 
Ice Sheet, as did progressive depression of the land surface 
as glaciers expanded during each glaciation. During the most 
recent (Fraser) glacier advance, local glacio-isostatic depres- 
sion exceeded 270 m. Subsequent postglacial rebound of the 
Earth's crust, recorded in detail by proglacial lake shorelines, 
was rapid. 

Reconstruction of the Puget lobe of the Cordilleran Ice 
Sheet during the last glacial maximum requires basal sliding at 
rates of several hundred meters per year, with pore-water pres- 
sures nearly that of the ice overburden. Landforms produced 
during glaciation include an extensive low-gradient outwash 
plain in front of the advancing ice sheet, a prominent system of 
subparallel troughs deeply incised into that plain and carved 
mainly by subglacial meltwater, and widespread streamlined 
landforms. At the southeastern limit of the ice sheet, the Pur- 
cell Trench lobe dammed glacial Lake Missoula to volumes 
as much as 2500 km3, which episodically discharged as much 
as 30 million m3/s. Scores of great floods swept across the 
Channeled Scablands of eastern Washington at intervals of 
typically a few decades, carving scabland channels as large 
as great river valleys. Modem geomorphic analysis of them 
confirms one of the region's early theories of wholesale de- 
velopment of landscape by the Cordilleran Ice Sheet. 
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